零基础体验hadoop大数据
时间:2016-10-13 09:16 来源:潇湘夜雨 作者:华嵩阳 点击:次
Hadoop简介:雏形开始于2002年的Apache的Nutch,Nutch是一个开源Java 实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具。包括全文搜索和Web爬虫。 随后在2003年Google发表了一篇技术学术论文谷歌文件系统(GFS)。GFS也就是google File System,google公司为了存储海量搜索数据而设计的专用文件系统。 2004年Nutch创始人Doug Cutting基于Google的GFS论文实现了分布式文件存储系统名为NDFS。 2004年Google又发表了一篇技术学术论文MapReduce。MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行分析运算。 2005年Doug Cutting又基于MapReduce,在Nutch搜索引擎实现了该功能。 2006年,Yahoo雇用了Doug Cutting,Doug Cutting将NDFS和MapReduce升级命名为Hadoop,Yahoo开建了一个独立的团队给Goug Cutting专门研究发展Hadoop。 不得不说Google和Yahoo对Hadoop的贡献功不可没。 一、MapReduce理论基础 每个MapReduce job都是Hadoop客户端想要执行的一个工作单元,它一般由输入数据、MapReduce程序和配置信息组成,而Hadoop会把每个job分隔成两类任务(task):map任务和reduce任务。 在Hadoop集群中有两类节点来执行两类job进程的执行 1.1 大数据处理 任何基础业务包含了收集、分析、监控、过滤、搜索或组织web内容的公司或组织都面临着所谓的“大数据”问题:“web规模”处理即海量数据处理的代名词。社交类网站的兴起也使得这些组织面临着另一个问题:用户行为数据分析,这涉及到通过日志文件记录用户的对web页面浏览、点击、停留时长等,而后对日志文件中的大量数据进行分析以支持进行合理、正确的商业决策。 那么,大数据处理究竟意味着对多大规模的数据进行处理?一个简单的例子:Google在2004年平均每天利用MapReduce处理100GB的数据,到2008年平均每天处理的数据已经达到20PB;2009年,Facebook的数据量达到2.5PB,且以每天15TB的速度在增长。PB级别的数据集正变得越来越常见,大数据时代的到来已然是不争的事实,密集数据处理也正迅速成为现实需求。 大数据问题的处理需要以与传统数据处理方式所不同的方法去实现,这正是MapReduce思想得以大放光彩的核心所在。MapReduce在实现大数据处理上有着多个基础理论思想的支撑,然而这些基础理论甚至实现方法都未必是MapReduce所创,它们只是被MapReduce采用独特的方式加以利用而已。 (1) 向外扩展(Scale out)而非向上扩展(Scale up):大数据的处理更适合采用大量低端商业服务器(scale out)而非少量高端服务器(scale up)。后者正是向上扩展的系统性能提升方式,它通常采用有着SMP架构的主机,然而有着大量的CPU插槽(成百上千个)及大量的共享内存(可以多达数百GB)的高端服务器非常昂贵,但其性能的增长却非线性上升的,因此性价比很一般。而大量的低端商业服务器价格低廉、易于更换和伸缩等特性有效避免了向上扩展的敝端。 (2)假设故障很常见(Assume failures are common):在数据仓库架构级别,故障是不可避免且非常普遍的。假设一款服务器出故障的平均概率为1000天1次,那么10000台这种服务器每天出错的可能性将达到10次。因此,大规模向外扩展的应用场景中,一个设计优良且具有容错能力的服务必须能有效克服非常普遍的硬件故障所带来的问题,即故障不能导致用户应用层面的不一致性或非确定性。MapReduce编程模型能通过一系列机制如任务自动重启等健壮地应付系统或硬件故障。 (3)将处理移向数据(Move processing to the data):传统高性能计算应用中,超级计算机一般有着处理节点(processing node)和存储节点(storage node)两种角色,它们通过高容量的设备完成互联。然而,大多数数据密集型的处理工作并不需要多么强大的处理能力,于是把计算与存储互相分开将使得网络成为系统性能瓶颈。为了克服计算如此类的问题,MapReduce在其架构中将计算和存储合并在了一起,并将数据处理工作直接放在数据存储的位置完成,只不过这需要分布式文件系统予以支撑。 (4)顺序处理数据并避免随机访问(Process data sequentially and avoid random access):大数据处理通常意味着海量的数量难以全部载入内存,因而必须存储在磁盘上。然而,机械式磁盘寻道操作的先天性缺陷使得随机数据访问成为非常昂贵的操作,因此避免随机数据访问并以顺序处理为目的完成数据组织成为亟待之需。固态磁盘虽然避免了机械磁盘的某此缺陷,然而其高昂的价格以及并没有消除的随机访问问题仍然无法带来性能上的飞跃发展。MapReduce则主要设计用来在海量数据集上完成批处理操作,即所有的计算被组织成较长的流式处理操作,以延迟换取较大的吞吐能力。 (5)向程序员隐藏系统级别的细节(Hide system-level details from the application developer): (6)无缝扩展(Seamless scalability): 1.2 MapReduce和大数据问题 海量数据处理的核心思想无非是将一个较大的问题进行“分割包围、逐个歼灭”。然而其难点和关键点在于如何将一个大的问题分分割成多个可以分别在不同的CPU上或不同的主机上进行处理的独立小问题,而且这些独立进行处理的小问题所产生的中间结果又该如何合并成最终结果并予以输出。因此,看似简单的化整为零的处理思想却不得不面临如下的难题: (1) 如何将大问题分割为小任务?进一步地,如何将大问题分解为可以并行处理的小任务? (2) 如何将分解好的小任务派送给分布式系统中的某主机且是较为适合解决此问题的主机上的worker完成处理? (3) 如何保证某worker获取所需的数据? (4) 如何协调不同worker之间进行同步? (5) 如何将某worker的部分结果共享给其它需要此结果的worker? (6) 如何在出现软件或硬件故障时仍然能保证上述工作的顺利进行? 在传统的并行或分布式编程模型中,程序员不得不显式地解决上述的部分甚至是全部问题,而在共享内存编程中,程序员需要显式地协调对共享数据结构的如互斥锁的访问、显式地通过栅(barrier)等设备解决进程同步问题、并得时刻警惕着程序中可能出现的死锁或竞争条件。虽然有些编程语言也或多或少地规避了让程序员面对上述问题,但却也避免不了将资源分配给各worker的问题。MapReduce的优势之一便是有效地向程序员隐藏了这些问题。 1.3 函数式编译语言 MapReduce是一种类似于Lisp或ML的函数式编程语言。函数式编程的核心特性之一是基于高阶函数,即能够接受其它函数作为参数的函数完成编程。MapReduce有两个常见地内置高阶函数map和fold。 如图所示,给定一个列表,map(接受一个参数)以函数f为其参数并将其应用于列表中的所有元素;fold(接受两个参数)以函数g和一个初始值作为参数,然后将g应用于初始值和列表中的第一个元素,结果被放置于中间变量中。中间变量和第二个元素将作为g函数下一次应用时的参数,而后如此操作直至将列表中的所有元素处理完毕后,fold会将最终处理结果保存至一个中间变量中。 于是,基于上述过程,我们可以把map视作利用f函数将给定数据集完成形式转换的操作,同样地,fold就可以被看作利用g函数完成数据聚合的操作。我们就可以由此得知,各函数式程序在运行时彼此间是隔离的,因此,在map中将f函数应用于列表中每一个元素的操作可以并行进行,进一步地讲,它们可以分布于集群中的不同节点上并行执行。然而,受限于数据的本地性,fold操作需要等到列表中的每一个元素都准备停当之后才能进行。幸运地是,现实生活中的应用程序并不要求g函数应用于列表中的所有元素,因此,列表中元素可以被分为多个逻辑组,并将fold操作并行地应用在这些逻辑组上即可。由此,fold操作也可以以并行的方式高效完成。 MapReduce有两个常见地内置高阶函数map和reduce,其map就类似于上述过程中的map操作,reduce对应于上述过程中的fold操作。只不过,MapReduce的执行框架能自行协调map与reduce并将其应用于在商业服务器硬件平台上并行处理海量数据。 更为精确地说,MapReduce有三个相互关联却各不相同的概念。首先,MapReduce是一个如上所述的函数式编程语言。其次,MapReduce也是一个运行框架,它能够协调运行基于MapReduce思想开发的程序。最后,MapReduce还可以被看作编程模型和执行框架的软件实现,如Google的专有实现和另一个开源实现Hadoop等。 1.4 mapper和reducer 键值对儿(Key-value pair)是MapReduce的基础数据结构。Key和Value可以是基础类型数据,如整数、浮点数、字符串或未经加工的字节数据,也可以是任意形式的复杂数据类型。程序员可以自行定义所需的数据类型,也可借助于Protocol Buffer、Thrift或Avro提供的便捷方式完成此类工作。 MapReduce算法设计的工作之一就是在给定数据集上定义“键-值”数据结构,比如在搜索引擎搜集、存储网页类工作中,key可以使用URL来表示,而value则是网页的内容。而在有些算法中,Key也可以是没有任何实际意义的数据,其在数据处理过程中可被安全忽略。在MapReduce中,程序员需要基于如下方式定义mapper和reducer: (责任编辑:liangzh) |